
Chapter 6: Python Lists

Prepared by: Hanan Hardan

3/14/2022 1

Python Lists

• Lists are used to store multiple items in a single

variable.

• Lists are created using square brackets:

Example: Create a List

thislist = ["apple", "banana", "cherry"]

print(thislist)

List Items

• List items are ordered, changeable, and allow duplicate

values.

• List items are indexed, the first item has index [0], the

second item has index [1] etc.

• Ordered: It means that the items have a defined order, and

that order will not change.

• If you add new items to a list, the new items will be placed

at the end of the list.

• Changeable: meaning that we can change, add, and remove

items in a list after it has been created.

List Items

• Allow Duplicates: Since lists are indexed, lists can have

items with the same value:

Example

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

List Length

To determine how many items a list has, use the len()
function:

Example: Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

List Items - Data Types

• List items can be of any data type:

Example: String, int and boolean data types:

list1 = ["apple", "banana", "cherry"]

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

• A list can contain different data types:

Example

list4 = ["abc", 34, True, 40, "male"]

List5= [("abc", 34),["abc", 34], "abc", 34]

The list() Constructor

• It is also possible to use the list() constructor when creating a new list.

Example:

thislist = list(("apple", "banana", "cherry")) # note the double round-brackets

print(thislist)

Access List Items

• List items are indexed and you can access them by referring to

the index number:

Example: Print the second item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[1])

• Negative indexing means start from the end

-1 refers to the last item, -2 refers to the second last item etc.

Example: Print the last item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[-1])

Range of Indexes

• You can specify a range of indexes by specifying where to

start and where to end the range.

• When specifying a range, the return value will be a new list

with the specified items.

Example: Return the third, fourth, and fifth item:

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[2:5])

Note: The search will start at index 2 (included) and end at index

5 (not included).

Range of Indexes

• Remember that the first item has index 0.

• By leaving out the start value, the range will start at the first

item:

This example returns the items from the beginning to, but NOT

including, "kiwi":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[:4])

• By leaving out the end value, the range will go on to the end of

the list:

This example returns the items from "cherry" to the end:

thislist =["apple", "banana", "cherry", "orange", "kiwi", "mango"]

print(thislist[2:])

Range of Negative Indexes

• Specify negative indexes if you want to start the search from

the end of the list:

• This example returns the items from "orange" (-4) to, but

NOT including "mango" (-1):

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[-4:-1])

Names = ("Ali", "Sami", "Omar", "Hani", "Reem")

print(Names[-1:-4:-1])

print(Names[-1:-4])

Check if Item Exists

• To determine if a specified item is present in a list use the in

keyword:

Example: Check if "apple" is present in the list:

thislist = ["apple", "banana", "cherry"]

if "apple" in thislist:

print("Yes, 'apple' is in the fruits list")

Change List Items

• To change the value of a specific item, refer to the index number:

Example: Change the second item:

thislist = ["apple", "banana", "cherry"]

thislist[1] = "blackcurrant"

print(thislist)

Change a Range of Item Values

To change the value of items within a specific range, define a list with the

new values, and refer to the range of index numbers where you want to

insert the new values:

Example

Change the values "banana" and "cherry" with the values "blackcurrant"

and "watermelon":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "mango"]

thislist[1:3] = ["blackcurrant", "watermelon"]

print(thislist)

3/14/2022 14

Change a Range of Item Values

• If you insert more items than you replace, the new items will be

inserted where you specified, and the remaining items will move

accordingly:

Example

Change the second value by replacing it with two new values:

thislist = ["apple", "banana", "cherry"]

thislist[1:2] = ["blackcurrant", "watermelon"]

print(thislist)

Note: The length of the list will change when the number of items inserted

does not match the number of items replaced.

3/14/2022 15

Change a Range of Item Values

• If you insert less items than you replace, the new items will be inserted

where you specified, and the remaining items will move accordingly:

Example

Change the second and third value by replacing it with one value:

thislist = ["apple", "banana", "cherry"]

thislist[1:3] = ["watermelon"]

print(thislist)

Add List Items

Append Items

• To add an item to the end of the list, use the append() method:

Example

Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

Add List Items

Insert Items

• To insert a list item at a specified index, use the insert() method.

Example

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

thislist.insert(2, "watermelon")

print(thislist)

Note: As a result of the example above, the list will now contain 5 items.

Add List Items

Extend List

• To append elements from another list to the current list, use the extend()

method.

Example

Add the elements of tropical to thislist:

thislist = ["apple", "banana", "cherry"]

tropical = ["mango", "pineapple", "papaya"]

thislist.extend(tropical)

print(thislist)

Note:The elements will be added to the end of the list.

Add List Items

Add Any Iterable

• The extend() method does not have to append lists, you can add any

iterable object (tuples, sets, dictionaries etc.).

Example

Add elements of a tuple to a list:

thislist = ["apple", "banana", "cherry"]

thistuple = ("kiwi", "orange")

thislist.extend(thistuple)

print(thislist)

Remove List Items

Remove Specified Item

• The remove() method removes the specified item.

Example: Remove "banana":

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

Remove List Items

Remove Specified Index

• The pop() method removes the specified index.

Example: Remove the second item:

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)

print(thislist)

Remove List Items

• If you do not specify the index, the pop() method removes the last item.

Example: Remove the last item:

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

Remove List Items

• The del keyword also removes the specified index:Example

Example: Remove the first item:

thislist = ["apple", "banana", "cherry"]

del thislist[0]

print(thislist)

• The del keyword can also delete the list completely.

Example: Delete the entire list:

thislist = ["apple", "banana", "cherry"]

del thislist

Remove List Items

Clear the List

• The clear() method empties the list.

• The list still remains, but it has no content.

Example: Clear the list content:

thislist = ["apple", "banana", "cherry"]

thislist.clear()

print(thislist)

Loop Lists

Loop Through a List

• You can loop through the list items by using a for loop:

Example: Print all items in the list, one by one:

thislist = ["apple", "banana", "cherry"]

for x in thislist:

print(x)

Loop Lists

Loop Through the Index Numbers

• You can also loop through the list items by referring to their index

number.

• Use the range() and len() functions to create a suitable iterable.

Example: Print all items by referring to their index number:

thislist = ["apple", "banana", "cherry"]

for i in range(len(thislist)):

print(thislist[i])

List Comprehension

• List comprehension offers a shorter syntax when you want to create a new

list based on the values of an existing list.

• Comprehension syntax:

newlist = [expression for item in list if condition == True]

• The expression is some calculation or operation acting upon the variable

item

• The condition is like a filter that only accepts the items that valuate to

True.

• The return value is a new list, leaving the old list unchanged.

List Comprehension

Example: Based on a list of fruits, you want a new list, containing only the

fruits with the letter "a" in the name.

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

Note: With list comprehension you can do all that with only one line of code

Without list comprehension With list comprehension

newlist = []

for x in fruits:

if "a" in x:

newlist.append(x)

print(newlist)

newlist = [x for x in fruits if "a" in x]

print(newlist)

List Comprehension

Example: Only accept items that are not "apple":

newlist = [x for x in fruits if x != "apple"]

• The condition if x != "apple" will return True for all elements other than

"apple", making the new list contain all fruits except "apple".

Example:

li = [3, 6, 2, 7]

l1=[elem*2 for elem in li]

print(l1)

List Comprehension

• The condition is optional and can be omitted:

Example: With no if statement:

newlist = [x for x in fruits]

• The iterable can be any iterable object, like a list, tuple, set etc.

Example: You can use the range() function to create an iterable:

newlist = [x for x in range(10)]

Example: Accept only numbers lower than 5:

newlist = [x for x in range(10) if x < 5]

List Comprehension

Expression

• The expression is the current item in the iteration, but it is also the

outcome, which you can manipulate before it ends up like a list item in the

new list:

Example: Set the values in the new list to upper case:

newlist = [x.upper() for x in fruits]

• You can set the outcome to whatever you like:

Example: Set all values in the new list to 'hello':

newlist = ['hello' for x in fruits]

List Comprehension

• The expression can also contain conditions, not like a filter, but as a way

to manipulate the outcome:

Example: Return "orange" instead of "banana":

newlist = [x if x != "banana" else "orange" for x in fruits]

• The expression in the example above says:

"Return the item if it is not banana, if it is banana return orange".

Sort Lists

• List objects have a sort() method that will sort the list alphanumerically

and numerically, ascending, by default:

• Sort List Alphanumerically

Example:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort()

print(thislist)

• Sort the list numerically:

Example:

thislist = [100, 50, 65, 82, 23]

thislist.sort()

print(thislist)

Sort Lists

• Sort Descending :To sort descending, use the keyword argument reverse =

True

Example 1:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort(reverse = True)

print(thislist)

Example 2:

thislist = [100, 50, 65, 82, 23]

thislist.sort(reverse = True)

print(thislist)

Sort Lists

Reverse Order

• What if you want to reverse the order of a list, regardless of the

alphabet?

The reverse() method reverses the current sorting order of the elements.

Example: Reverse the order of the list items:

thislist = ["banana", "Orange", "Kiwi", "cherry"]

thislist.reverse()

print(thislist)

Join Lists

• There are several ways to join, or concatenate, two or more lists in

Python.

One of the easiest ways are by using the + operator.

Example: Join two list:

list1 = ["a", "b", "c"]

list2 = [1, 2, 3]

list3 = list1 + list2

print(list3)

Join Lists

Another way to join two lists is by appending all the items from list2 into list1,

one by one:

Example: Append list2 into list1:

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

for x in list2:

list1.append(x)

print(list1)

Join Lists

Or you can use the extend() method, which purpose is to add elements from one

list to another list:

Example: Use the extend() method to add list2 at the end of list1:

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

list1.extend(list2)

print(list1)

Collection data types

• There are four collection data types in the Python programming
language:

• List is a collection which is ordered and changeable. Allows duplicate
members.

• Tuple is a collection which is ordered and unchangeable. Allows
duplicate members.

• Set is a collection which is unordered and unindexed. No duplicate
members.

• Dictionary is a collection which is ordered* and changeable. No
duplicate members.

• *As of Python version 3.7, dictionaries are ordered. In Python 3.6 and
earlier, dictionaries are unordered.

• When choosing a collection type, it is useful to understand the
properties of that type. Choosing the right type for a particular data
set could mean retention of meaning, and, it could mean an increase
in efficiency or security.

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

